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Biographical Sketch

In my sophomore year of high school, I suffered a grade 2 concussion that severely

impacted my ability to read, write, and generally succeed in my classes. For nearly six months, I

struggled to study for more than an hour at a time without a debilitating headache. Yet, whenever

I felt up to it, I always found myself coming back to biology. As I continued taking more science

courses over the next few years, my love for the subject grew and I eventually chose to continue

my studies as a biology major at Lafayette College.

I began my journey at Lafayette with a general interest in biology and human medicine,

but without any knowledge of specific fields or career paths that interested me. So, I took every

opportunity I could to learn more. I took courses in statistics, biomedical informatics, and

genetics. However, it wasn’t until the fall semester of my junior year that something truly stood

out to me. When I took immunology last fall, it was by far the hardest class I had ever taken. I

had never encountered a subject that involved so many systems existing independently while still

working in tandem with each other, covering diverse mechanisms, concepts, and conditions.

Despite the challenges of the course, I found myself driven to return to the material and learn

more. I spent hours studying, scribbling diagrams of T cell activation mechanisms, and creating

numerous flashcard decks to help myself understand the concepts being presented. That same

semester, I began work as an independent research student under Dr. Kurt, using a computational

approach to study interactions between the TLR4 and TLR5 signaling pathways. This work, in

tandem with the immunology course I was taking, made it clear to me that immunology was a

subject that I genuinely enjoyed learning about. I knew that I wanted to be at the forefront of new

immunological discoveries through a career in immunology research, and I chose to pursue a

senior honors thesis.
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The following summer, with the background I had from my courses and research

experience, I was fortunate to participate in an internship at the Benaroya Research Institute in

Seattle, Washington, a distinguished research facility that focuses on the study of

immune-mediated diseases. This experience provided me with the opportunity to strengthen my

laboratory techniques and developed my understanding of current immunological research.

When I returned to Lafayette for the fall semester, I began designing and working on my

honors thesis, expanding upon the work I had conducted as a junior. This experience has been

invaluable in my development as a student and a scientist, and it would have been impossible

without the support and guidance of Dr. Kurt. I will be graduating this May with a B.S. in

Biology, and in August I will begin the pursuit of a Ph.D. through the University of Michigan’s

Program in Biomedical Sciences, entering with a primary interest in Immunology.

Newman 3



Abstract

This project aimed to alter a computational model of monocyte activation via the

Toll-like receptor (TLR) 4 and 5 signaling cascades to provide insights into the pro-inflammatory

activation of bone marrow-derived macrophages (BMDM) and to further utilize these findings to

enable the prediction of BMDM therapeutic efficacy following TLR stimulation. I aimed to

quantify IL-1β produced by BMDM stimulated with varying concentrations of TLR agonists to

verify if the computational model could predict the optimal agonist combinations for BMDM

activation and to determine if the computational model’s predicted activation correlated with

therapeutic efficacy. Through an analysis of TLR-related gene expression in both monocytes and

BMDM, I identified one gene expressed at a higher level and three genes expressed at lower

levels in BMDM relative to monocytes. I then incorporated these differences in gene expression

into the modeling parameters, to observe the model's ability to predict cell activity.

Experimentally, production of the pro-inflammatory cytokine IL-1β generally increased as TLR

agonist concentration increased, and IL-1β production peaked and stabilized 24 hours

post-treatment. BMDM treated with high concentrations of TLR4 and TLR5 agonists were able

to temporarily delay tumor growth compared to BMDM treated with HBSS. Medium agonist

concentrations contributed to the development of more aggressive tumors, and low

concentrations of agonists provided a sustained benefit in delaying tumor growth and severity.

While the model's misalignment with experimental results suggested that a different approach

may benefit model adaptation, therapeutic tests did reveal that polarization toward a

pro-inflammatory state, defined by produced IL-1β, had significant effects on both tumor growth

and severity. This highlighted that the concentration of agonists used for cell stimulation is

critical in predicting the therapeutic efficacy of BMDM as a potential tumor therapy.
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Introduction

The innate immune system, comprised of physical and anatomical barriers, effector cells,

antimicrobial peptides, soluble mediators, and cell receptors is crucial for its role as the first line

of defense against pathogens encountered by an individual. The components of this system work

in combination to recognize and initiate responses to foreign substances that enter the body,

dispelling many potentially harmful substances and protecting an individual from illness

(Aristizábal, 2013). Macrophages, a type of innate phagocytic effector cell, have reported

functions in development, homeostasis, tissue repair, and immunity (Wynn, Chawla, & Pollard,

2013), making them one of the most involved cells of the innate immune system. Postnatal

macrophage development occurs through the differentiation of circulating monocytes, and the

activation and further differentiation of these monocytes can be polarized towards the

inflammatory M1 macrophage phenotype or the anti-inflammatory M2 phenotype through

exposure to specific environmental factors which trigger responses through TLRs.

TLRs are a type of pattern recognition receptor (PRR) that exist both intra- and

extracellularly as a part of circulating monocytes to detect and initiate responses to unique

pathogen-associated molecular patterns (PAMPs) (Kawasaki & Kawai, 2014). Upon recognizing

its specific pattern, certain TLRs, including TLRs 4 and 5, initiate a signaling pathway that

contributes to cell activation and differentiation into an M1 macrophage, which then goes on to

function as a pro-inflammatory cell in the affected tissue (Juhas et al., 2015).

M1 macrophages have also been shown to have anti-tumor capabilities. Through their

secretion of cytokines TNFɑ, IL1β, and IL12 and chemokines CXCL9 and CXCL10, they

promote a Th1 response, which furthers inflammatory responses at affected sites to enhance the
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recruitment of other immune cells (van Dalen et al., 2019). M1 macrophages are also known to

upregulate genes involved in antigen processing and presentation, improving T-cell responses

(Martinez & Gordon, 2014). When these macrophages are exposed to tumor cells, their

enhancement of the inflammatory process results in improved recruitment of other immune cells

which can then work to eliminate cancer cells. Translating this characteristic into therapy, studies

done as early as the 1980s have examined how the injection of laboratory-derived M1

macrophages, induced from monocyte-derived macrophages stimulated with IFNγ, affects tumor

development (Andreesen et al., 1990). These cells, coined as macrophage-activated killer (MAK)

cells, have demonstrated some ability to slow tumor progression when injected into cancer

patients with little to no side effects, but additional studies are needed to ensure that MAK cells

aren’t reverting to an M2 tumor-associated macrophage (TAM) phenotype when exposed to the

tumor microenvironment (TME) and to improve upon clinical results (Anderson et al., 2021).

To accelerate the process of determining the best way to generate MAK cells for tumor

therapies, one can turn to a model. Models, whether they are mathematical or computational,

have long been used to facilitate the testing of multi-variate experiments, as they, once calibrated

to ensure they resemble results shown experimentally, can provide a glimpse into the behavior of

variables of interest for a fraction of the cost and time that would otherwise go towards

experimental testing. Previously, a computational model was created simulating the activation of

monocytes when exposed to TLR stimuli (Liew et al., 2018). This project examined whether this

pre-existing verified model was also applicable to BMDM. As BMDM are derived from

monocytes, they share many characteristics, and it would be reasonable to assume that they may

behave similarly to the same stimuli. This project focused on validating this claim, verifying that

the model was applicable to BMDM and testing if levels of activation of BMDM affected their
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therapeutic capabilities. Future directions for the verified model include its direct application to

research that aims to study MAK cells as tumor therapies, streamlining the research process to

predict TLR agonist combinations that are the most effective in tumor treatment without

spending absorbent amounts of time or money on experimental tests of the same conditions.

To examine whether the pre-existing computational model could be applied to the

prediction of M1 BMDM responses, I performed an initial analysis of modeling data to predict

levels of the TLR4 and TLR5 agonists lipopolysaccharide (LPS) and flagellin (FLA) that should

be used to generate high, medium, and low levels of activation from monocytes. To modify the

model for BMDM, I used RT-qPCR to determine the expression of TLR signaling-related genes

in BMDM relative to those of monocytes. I then stimulated BMDM with the model-predicted

agonist combinations, and measured activation and polarization towards the M1 phenotype

through an ELISA quantifying IL-1β production, one of the cytokines associated with M1

phenotypic macrophages, to determine if BMDM activation mirrors that of monocytes. This

demonstrated the ability of the model to predict the activation level of BMDM in response to

TLR agonist stimulation. To test whether these activation levels affected BMDM therapeutic

efficacy, an EMT6 murine mammary carcinoma model was utilized to examine how MAKs

derived from BMDM at low, medium, and high levels of activation affected tumor growth and

development.

I hypothesized that the model would be applicable to the BMDM due to the shared

morphological similarities and TLR pathway functions between BMDM and monocytes. I also

hypothesized that highly activated BMDM would display the best therapeutic results due to their

increased cytokine production, allowing them to recruit a greater abundance of other immune

cells to the tumor site.
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Materials & Methods

Computational Modeling

Computer simulations were run in a previously constructed TLR4 and TLR5 dual

signaling model that was written in Scala (version 2.13.3) and runs on the Ubuntu (20.04)

operating system, with executable NetLogo programs generated for the NetLogo 6.0.1

environment. Parameters included (and values in the initial THP-1 model) were number-tab3d

(0), number-ikk-complex (50), number-deactivated-tak1 (50), number-nfkb (50),

number-activated-tak1(0), number-tlr4 (25), number-tab2 (50), number-tab1 (50), number-ikba

(0), number-traf6 (0), number-lps (varied), number-tab4d (0), number-dna (10), number-fla

(varied), number-irak4 (50), number-tab3 (50), number-irak2 (100), number-tlr5 (25),

number-ubc13 (50), number-rna (0), number-tab1d (0), number-irak-m (75), number-foo1 (0),

number-nfkb_n (0), number-tab2d (0), number-rna-c (0), number-irak1 (100), number-myd88

(250), membrane-ycor (21), nucwall-ycor (-17), delta-movement (0.5), tick-delta (200), and

decay-time (500). Outputs were given as count tab4ds, count rnas, count tab3ds, count tab2ds,

count foo1s, count traf6s, count tab1ds, count activated-tak1s, and count ikbas. For the purposes

of this project, number-nfkb, number-tlr4, number-tab2, number-tab1, number-lps, number-fla,

number-irak4, number-tab3, number-irak2, number-tlr5, number-irak1, and number-myd88 were

studied, and count-rnas was measured as the output variable of interest.

Modeling Analysis

Data were uploaded into Posit Cloud and reformatted to be readable and to stack all runs

analyzing the variable(s) of interest. Files were analyzed in Posit directly, or exported as new

CSV files and opened and analyzed using google sheets. LPS and FLA amounts were grouped
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into “low” (5, 10, 25), “medium” (50, 100, 250), and “high” (500, 1000, 2500) categories to

better view general trends in RNA output as a result of agonist level changes. At each timestep,

RNA output was summed with output from preceding timesteps, to capture the cumulative

output over time and reflect the long-term stability of proteins tested experimentally when

incubated at 37℃.

THP-1 Maintenance

The THP-1 cell line used for experimental testing of aim one was purchased from

InvivoGen (San Diego, CA), and aliquots of the cell line were stored in liquid N2. Prior to

experiments, THP-1 cells were thawed and maintained in 25cm2 culture flasks with 5ml cRPMI

(Corning 1x RPMI 1640 with L-glutamine supplemented with 10% heat-inactivated Neuromics

fetal bovine serum, 2mM Lonza BioWhittaker® L-glutamine, 100 U/mL Lonza Biowhittaker®

penicillin/streptomycin, 1x Lonza Biowhittaker® NEAA Mixture, 5x10-5 M Sigma-Aldrich

2-mercaptoethanol, and 1mM Lonza Biowhittaker® sodium pyruvate) at 37°C with 5% CO2.

Cells were split three times per week.

THP-1 TLR Agonist Treatment

THP-1 cells were adjusted to a concentration of 5.6 x 105 cells/mL and 180 μL of cells

were added to wells of a 96-well round-bottom plate. To assess the interactions between TLR

signaling pathways, cells were treated with 50 µl of 1X gibco HBSS, 0.05 µg/mL LPS diluted

from InvivoGen 5 mg stock, 0.5 µg/mL LPS, or 5 µg/mL LPS, in combination with 50 µl of

HBSS, 0.05 µg/mL FLA diluted from InvivoGen 100 µg stock, 0.5 µg/mL FLA, or 5 µg/mL

FLA. Cells were incubated with the agonists at 37°C with 5% CO2 for 2, 6, 12, 24, or 72 hours

prior to analysis.
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THP-1 Agonist Response Analysis

Cell supernatants were collected 2, 6, 12, 24, or 72 hours after agonist treatment and

were transferred to a new 96-well flat-bottom plate containing 180 µL prepared InvivoGen

QUANTI-Blue™ solution. The plate was incubated for 1 hour at 37℃, 5% CO2 before optical

density was read at 650 nm using an Infinite® 200 PRO Tecan microplate reader.

Mice Breeding & Care

BALB/c mice were bred on-site and housed in a Thoren caging system with ad

libitum-provided food and water and were utilized in accordance with the Institutional Animal

Care and Use Committee (IACUC) guidelines for ethical conduct in the care and use of animals.

BMDM Culture Preparation

BALB/c mice were humanely euthanized through exposure to CO2 gas followed by

cervical dislocation. Mice were skinned from the waist down, and legs were removed from the

body at the hip joint. Bones were cleaned of excess tissue and were added to petri dishes with 5

mL cRPMI. Bone marrow was collected from the hind legs using a BD 25G x ⅝ 1 mL TB

syringe to push 0.5-1.0 mL of cRPMI through both the femur and the tibia at least three times,

alternating the end of the bone at which the needle was inserted. Ten additional mL cRPMI was

added to the petri dish, and the total 15 mL cRPMI containing bone marrow was passed through

a Falcon® 40 µm nylon cell strainer into a Falcon 50 mL tube. Cell strainer was rinsed with an

additional 10 mL of cRPMI, bringing the total volume to 25 mL. The cells were spun down at

400 xg for 8 minutes, supernatant was discarded, and precipitate was dislodged by manually

flicking the tube. Five mL red blood cell lysis buffer (1 L H2O, 8.29 g NH4Cl, 1.0 g KHCO3, 37.2

mg EDTA, pH adjusted to 7.2) and 5 mL cRPMI was added before the cells were spun down at
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400 xg for 8 minutes to facilitate the removal of red blood cells. Supernatant was poured off, and

the bone marrow mononuclear cells (MNCs) were resuspended in 25 mL cRPMI containing 10

ng/mL macrophage colony-stimulating factor (M-CSF) diluted from Peprotec 10 µg stock to

encourage macrophage development. Cells were transferred in 1 mL aliquots across 24-well cell

culture plates, and media was replaced with fresh cRPMI supplemented with M-CSF every two

to three days for one week for use on the seventh day.

Primer Preparation

The National Center for Biotechnology Information’s RefSeq database was utilized to

identify reference sequences for both human and mouse Gapdh, Tlr4, Tlr5, RelA, Myd88, Irak1,

Irak2, Irak4, Tab1, Tab2, Tab3. Primer3 v. 0.4.0 was used to identify potential primers for each

sequence. Amplicon length was set to 75-150 bp, optimal melting temperature was set to 68°C,

and the range for GC content was set from 50-60%. Preference was given to primers that had no

GC stretches longer than 3 bp in length, no Gs at the 5’ end, no more than 2 Gs or Cs in the last 5

spots at the 3’ end, and no 3’ complementarity. Forward and reverse primer sequences were run

through the nucleotide BLAST local alignment search tool to confirm specificity and were

ordered as 25 nmole DNA oligos from Integrated DNA Technologies. Purchased primers were

reconstituted with 1 mL Sigma-Aldrich PCR-grade water. To prepare primer stock solutions,

30,000 was divided over the primer-specific OD260 value times 33 to determine the volume of

primer added in µL. Calculated volumes of forward and reverse primers were combined, and

PCR-grade water was added to bring the stock volume to 1 mL.

TLR Gene Expression Quantification
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RNA was collected from untreated THP-1 cells and cultured BMDM utilizing the BioRad

Aurum™ Total RNA Mini Kit. To create cDNA from collected RNA, 15 µL RNA was combined

with 4 µL BioRad 5x iScript Reaction Mix and 1 µL BioRad iScript Reverse Transcriptase and

placed in an MJ Research MiniCycler™ to run on a pre-set cDNA cycle (25.0°C for 5 minutes,

46.0°C for 20 minutes, 95.0°C for 1 minute, hold at 4.0°C for up to 24 hours). For each PCR

reaction, 4.5 µL PCR-grade water, 0.5 µL cDNA, 12 µL BioRad iTaq Universal SYBR® Green

Supermix, and 7.5 µL of a prepared primer stock solution were added to a well of a BioRad PCR

plate. The BioRad CFX Connect real-time PCR detection system was used in data collection.

Data were returned in CFX Manager.

Analysis of RT-qPCR

GAPDH was set as the reference gene for expression analysis. For each of the three

experiments, BMDM expression was compared against THP-1 expression, setting THP-1

expression to 1. Data were organized in google sheets, and relative expression in BMDM for

each of the three experiments was averaged to produce a summary figure, constructed in Posit

Cloud. Standard errors were calculated and included as error bars.

BMDM TLR Agonist Treatment

To treat BMDM, 50 µl of HBSS, 0.05 µg/mL LPS, 0.50 µg/mL LPS, or 5.00 µg/mL LPS

was added to each well of the 24-well cell culture plate utilized to culture BMDM, alone or ​​in

combination with 50 µl 0.05 µg/mL FLA, 0.50 µg/mL FLA, or 5.00 µg/mL FLA. Cells were

incubated with the agonists at 37°C with 5% CO2 for 2, 6, 12, 24, 48, or 72 hours prior to

collection. BMDM supernatants (600 µL) from wells of stimulated cells were collected 2, 6, 12,

24, 48, or 72 hours following agonist treatment and were kept at -20℃ until analysis
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BMDM Agonist Response Analysis

Analysis was performed with the R&D Systems Quantikine™ ELISA kit specific for

either mouse IL-1β or mouse TNF-ɑ. Each sample was run in duplicate, with 3 repeats of the

experiment. Data were collected by reading optical density at 450 nm using an Infinite® 200

PRO Tecan microplate reader with 16 reads per well and at 570 nm with one read per well. Data

was returned in an Excel spreadsheet.

Analysis of ELISA Data

Data were collected in google sheets. The reads at 450 were averaged, and the read at 570

was subtracted from this average as correction. The read produced by the negative control (assay

diluent only, no IL-1β/TNF-ɑ) was further subtracted from each well. A linear regression of

reads from the protein standard solutions (included with the R&D Systems QuantikineTM ELISA

kit) was used to calculate the concentration of IL-1β/TNF-ɑ present in each well in pg/mL.

Standard errors were calculated for each treatment condition and were added to plots as error

bars. Data were transferred into Posit Cloud for construction of visual representations of data.

EMT6 Maintenance

EMT6 cells were thawed from liquid N2 stocks and were incubated at 37℃ and 5% CO2,

maintained in cRPMI, and split three times per week.

BMDM Preparation for Therapeutic Testing

BMDM were cultured and divided into four treatment conditions to produce cells

activated at high, medium, and low levels in addition to untreated BMDM serving as a control

cell population. Highly activated BMDM were treated with 10 µL 5.00 µg/mL LPS and 10 µL
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5.00 µg/mL FLA. BMDM activated at a medium level were treated with 10 µL 0.50 µg/mL LPS

and 10 µL 0.50 µg/mL FLA. BMDM activated at a low level were activated with 10 µL 0.05

µg/mL LPS and 10 µL 0.05 µg/mL FLA. Control BMDM were not treated with TLR agonists

and instead had 20 µL HBSS added to each well. Cells were incubated at 37°C with 5% CO2 for

24 hours prior to collection.

BMDM Collection

Media was collected from treated BMDM. Wells were washed with approximately 0.5

mL HBSS, which was added to collected media. Next, 100 µL of 1x PBS 10 mM EDTA was

added to each well, and the plate was placed on ice for 5 minutes. The collected media (700 µL)

was used to pipet up and down in each well to dislodge BMDM. All remaining media was

collected from the well. If BMDM were to be injected in combination with EMT6 cells, cell

concentrations were adjusted to be equivalent before cell types were combined. Cells were then

spun down at 400 xg for 8 minutes, washed three times with 10 mL HBSS, and adjusted to a

concentration of 1x106 BMDM per mL suspended in HBSS. If BMDM were to be injected alone,

cells were spun down at 400 xg for 8 minutes, washed three times with 10 mL HBSS, and

adjusted to a concentration of 1x106 cells per mL suspended in HBSS.

EMT6 Collection

Media was collected and discarded from the flask containing EMT6 cells. The cells were

washed with 5 mL HBSS, which was then discarded. One mL of Gibco 0.25% Trypsin-EDTA

(1X) was added to the flask, which was incubated at 37°C with 5% CO2 for 5 minutes before 9

mL of cRPMI was added and cells were dislodged by tapping the flask against a hard surface.

Media was collected and cells were counted. If EMT6 were to be injected in combination with
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BMDM, cell concentrations were adjusted to be equivalent before cell types were combined.

Cells were then spun down at 400 xg for 8 minutes, washed three times with 10 mL HBSS, and

adjusted to a concentration of 1x106 EMT6 cells per mL suspended in HBSS. If EMT6 were to

be injected alone, cells were spun down at 400 xg for 8 minutes, washed three times with 10 mL

HBSS, and adjusted to a concentration of 1x106 cells per mL suspended in HBSS.

Determination of Therapeutic Capabilities

BALB/c mice were subcutaneously injected with 100 µL of cell solution. In group A, 24

mice made up four treatment groups with 6 mice per group, and received an injection of EMT6

cells combined with BMDM that had been treated with 5.00 µg/mL LPS and 5.00 µg/mL FLA,

0.50 µg/mL LPS and 0.50 µg/mL FLA, 0.05 µg/mL LPS and 0.05 µg/mL FLA, or HBSS alone.

An additional 24 mice made up 4 treatment groups in group B with 6 mice per group, with each

mouse receiving an injection of EMT6 cells one week prior to an injection of BMDM that had

been treated with 5.00 µg/mL LPS and 5.00 µg/mL FLA, 0.50 µg/mL LPS and 0.50 µg/mL FLA,

0.05 µg/mL LPS and 0.05 µg/mL FLA, or HBSS alone. After day 7, tumor size was measured

every 2-3 days following injection until day 28 or until tumor size exceeded 1500 mm3, and the

mice were then sacrificed. Experiments were repeated at least two times.

Analysis of Tumor Sizes

A caliper was used to measure the length (longer measurement) and width (shorter

measurement) of the size of subcutaneous tumors in mm. The equation was used to𝑙𝑒𝑛𝑔𝑡ℎ • 𝑤𝑖𝑑𝑡ℎ2

2

find the volume of each tumor in mm3. Data was collected in Google Sheets and exported into

Posit Cloud. Tumor volumes from each treatment condition were averaged. Standard errors were

calculated and included in figures as error bars. Once one mouse from a treatment group had
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died, exponential regression was performed on data collected thus far from that treatment group,

to approximate the treatment group’s average tumor size at subsequent checkpoints to allow for

an extended comparison to other treatments. Mice that did not develop a palpable tumor at any

point during the 28-day period were excluded from analysis.

Statistical Analysis

In analyses of BMDM IL-1β production and tumor sizes, Bonferroni corrections were

used to establish the p-values corresponding to confidence levels of 95%, 99%, and 99.9% based

on the number of comparisons being performed. After normality was assessed using a

Shapiro-Wilks test and histogram generation, unpaired, one-tailed Welch’s two-sample t-tests

were used to determine the significance of differences that were observed between samples. In

analyzing survival probability over time, the probability of survival was calculated by dividing

the mice from a treatment group living on a given day by the number of mice in that treatment

group at day 0. After performing a Bonferroni correction to establish p-values corresponding to

confidence levels of 95%, 99%, and 99.9%, log-rank tests were used to estimate the significance

of differences in overall survival probability observed between the control group and each

treatment group.
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Results

TLR-related gene expression differs between THP-1 cells and BMDM

RT-qPCR data revealed significant differences between BMDM and THP-1 cells in the

expression of Irak1, Irak2, RelA, and Tab3 (Fig. 1). Irak1 and RelA were expressed at a ratio of

almost 0:1 (Table 1). Irak2 expression was noticeably increased in BMDM, with an expression

level approximately 70 times that of THP-1 cells (Table 1). Expression levels of Irak4, Tab1,

Tab2, Tlr4, and Tlr5 in BMDM seemed to show variation from THP-1 cells, but there was not

sufficient evidence to indicate a true difference in mean expression at a 95% confidence level

due to variability in the data.

Modeling efforts are successful in producing consistent patterns of RNA output in response

to varying LPS and FLA levels

From the RT-qPCR data (Fig. 1), baseline values in the model were adjusted: IRAK1,

TAB2, TAB3, and TLR5. IRAK2 was not modified despite the dramatic increase in expression

shown in BMDM, as it was already present in excess in the model, and it was not believed that

increasing its quantity would have an effect on the simulation. NFκB, the modeling equivalent to

the tested murine RELA, was unable to be adjusted without inhibiting model function and was

also left unchanged. IRAK1 was decreased from 100 to 25, TAB3 from 50 to 25, TLR5 from 25

to 5, and TAB2 was increased from 50 to 100 for round 1 of the model (Table 1).

The first round of modeling incorporating these parameters showed some response to

LPS variation and appeared to reveal a dose-dependent pattern when averaged (Figs. 2a-b), but

inconsistencies were seen when separating the data from the grouped “high”, “medium”, and

“low” LPS levels. Increasing LPS by a factor of 10, corresponding with the increases in
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experimental concentrations of 0.05 µg/mL, 0.50 µg/mL, and 5.00 µg/mL LPS, had inconsistent

effects on cumulative RNA output. Increasing LPS from 10 to 100 showed an initial increase,

but there was no increase when LPS was further increased to 1000 (Fig. 2c). An increase in LPS

from 25 to 250 significantly increased the RNA output, hitting the peak production point, yet this

output dropped back down when LPS was increased to 2500 (Fig. 2c). Comparing LPS 50 to

LPS 500, LPS 500 produced values that were slightly lower than LPS 50 (Fig. 2c). When

considering all values in succession, a significant increase in total RNA output was seen as LPS

was increased from 10 to 250, but output dropped when it reached 500, before increasing again

when LPS was increased to 1000 and 2500 (Fig. 2c). In summary, the first round of modeling

data showed a dose dependent pattern when runs were grouped into high, medium and low LPS

levels. However, when considering individual levels of LPS, there was no trend in how LPS

levels affected RNA output.

In an effort to achieve a model that would show a dose dependent response to individual

doses of LPS, a second round of modeling was conducted with IRAK1 increased from 25 to 30,

shifting closer to the original value seen in the functional THP-1 model. With this modification,

results were similar to those observed with the round 1 model. When the data were grouped, a

dose dependent response was evident (Figs. 2d-e). However, inconsistencies were seen when

individual doses of LPS runs were compared. For instance, setting LPS at 100 and 1000

produced the same level of RNA output (Fig. 2f). Increasing LPS from 25 to 250 resulted in a

decrease in RNA output (Fig. 2f), and increasing LPS from 50 to 500 produced a slight decrease

(Fig. 2f). Due to the lack of a dose dependent response, the model was adapted again.

For the third round of modeling, IRAK1 was returned to 25 and TAB2 was dropped to

50, because further analysis of the initial RT-qPCR results revealed that the increase in TAB2

Newman 18



expression in BMDM relative to THP-1 cells was not statistically significant. With these

adjustments to the model, RNA output values were found to be consistently lower than they had

been in previous runs. When the data were grouped, the low and high LPS groups each resulted

in higher levels of RNA output than the medium group (Figs. g-h). When looking at the data

from individual doses, inconsistencies in RNA output were more apparent than in previous

rounds of modeling. Notably, setting LPS at 250 produced no response (Fig. 2i). LPS 25 and

2500 produced the same level of RNA output, as did LPS 50 and 500. Thus, round 3 of the

model displayed even less evidence of a dose-dependent response than rounds 1 or 2 of the

model.

Each of the models thus far had relied on rounded input values derived from the

RT-qPCR ratios, and as no dose dependent effect was seen, the fourth round of modeling aimed

to match the RT-qPCR ratio-derived values as close as possible, rounding to the nearest whole

number as opposed to the nearest multiple of 5 or 10. This fourth round was also the first to

incorporate FLA to observe the interaction between the two signaling pathways. Results from

round 4 of the model revealed that FLA consistently increased RNA output beyond what was

produced from runs with LPS alone (Fig. 3). It appeared that combinations of low and medium

FLA with LPS produced a relatively consistent effect, with low LPS/low FLA and medium

LPS/low FLA producing similar results (Fig. 3a). Runs examining low LPS/medium FLA and

medium LPS/medium FLA also mirrored eachother (Fig. 3a). When low or medium FLA were

combined with high LPS, the total RNA output decreased slightly but still displayed similar

patterns (Fig. 3a). In contrast, high FLA produced a consistently high RNA output when

combined with either medium or high levels of LPS, but produced relatively low levels of RNA
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when combined with low LPS (Figs. 3a-c). Additionally, model 4 displayed more stability with

respect to a dose dependent effect (Fig. 3d) than observed with models 1-3.

Collectively, these data show that using the RT-qPCR-derived information about

differences in TLR-associated gene expression between BMDM and THP-1 was able to achieve

a consistent pattern of RNA output with different levels of LPS and FLA, indicating that the

model was able to generate a dose dependent response to LPS and FLA.

TLR stimulation increases expression of IL-1β and TNF-α in BMDM

The ELISA analysis of cultured BMDM treated with LPS reflected a sharp increase in

IL-1β concentration when cells were treated with 5 µg/mL LPS, compared to 0.05 or 0.50 µg/mL

LPS which produced no notable difference (Fig. 4a). At 24, 48, and 72 hours, the length of time

since treatment did not have a significant effect on protein production. As there was no change in

IL-1β production after the 24 hour timepoint, additional tests were performed on BMDM

incubated with agonists for 2, 6, and 12 hours, excluding the 0.05 µg/mL LPS treatment due to

it’s similarity to the 0.50 µg/mL LPS treatment. IL-1β produced by BMDM stimulated with 0.50

µg/mL and 5.00 µg/mL LPS rose steadily for the first six hours following incubation (Fig. 4b).

By 12 hours, the IL-1β produced by cells treated with 0.50 µg/mL LPS had peaked and remained

consistent at future timepoints, while the IL-1β production by cells treated with 5.00 µg/mL LPS

rapidly increased, stabilizing at 24 hours post-treatment (Fig. 4b).

Simultaneous treatments of cells with LPS and FLA revealed that when cells were

stimulated with 0.05 µg/mL or 0.50 µg/mL LPS, all concentrations of FLA contributed to an

increase in IL-1β production from that which was seen in cells treated with LPS alone (Fig. 4c).

In cells treated with 5.00 µg/mL LPS, the addition of 0.50 µg/mL FLA produced a significantly

lower level of IL-1β than the addition of either of the more extreme FLA concentrations (Fig.
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4c). Cells stimulated with 5.00 µg/mL FLA consistently produced the greatest amount of IL-1β

relative to all other FLA concentrations, regardless of the LPS concentration used in

combination. Combining 5.00 µg/mL and 5.00 µg/mL LPS for treatment led cells to produce the

most IL-1β overall (Fig. 4c).

Testing for TNF-ɑ production in dual-stimulated BMDM revealed that unlike IL-1β

production, TNF-ɑ was not produced in a dose dependent manner. BMDM treated with HBSS

alone produced very little TNF-ɑ, while any stimulation of TLR4 alone or in combination with

stimulation of TLR5 produced approximately 540 pg/mL TNF-ɑ (Fig. 4d).

ELISA analyses of stimulated cells revealed that all cells peaked in cytokine production

by 24 hours post-agonist treatment. Differences between IL-1β and TNF-ɑ production patterns

revealed that levels of pro-inflammatory cytokines are produced independently, and may differ in

their responses to agonist stimulation.

Agonist treatments have mixed effects on tumor growth

When BMDM and EMT6 were injected simultaneously, mice from the high treatment

group (5.00 µg/mL LPS and 5.00 µg/mL FLA) initially showed a statistically significant

decrease in tumor size from the control group (Fig. 6a). However, this effect appeared to fade

overtime, with the growth rate for the high treatment group rising overtime (Fig. 6a). By day 28,

33% of mice from this group had developed tumors that surpassed 1500 mm3 (Fig. 6b). Mice

from the medium treatment group also showed a lower tumor size than the control group

initially, but they quickly developed tumors that were more aggressive than those associated with

the control group (Fig. 6a). These mice were the first to begin developing tumors that had

surpassed 1500 mm3 in volume and had to be sacrificed; by day 28 37.5% of mice remained (Fig.

6b). Mice from the low-treatment group initially developed tumors that grew at rates similar to
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those of the control group, but by day 28, these mice had a 38% chance of survival, which was

better than that of any other treatment group, while mice from the control group had only a

12.5% chance of survival (Fig. 6b).

Considering the delayed injection of BMDM seven days post-EMT6 injection, BMDM

treated with high or low agonist concentrations were effective at slowing tumor growth to cause

tumor sizes that were significantly lower than those of the control group (p=0.0255 and

p=0.0285) within 5 days of their injection (Figs. 6a-b). These differences remained through day

15, and the high and low treatment groups generally performed similaraly over the course of the

28 day period. By day 22, three mice from the low treatment group no longer had a palpable

tumor (Figs. 6a-b).

While mortality trends had appeared similar in mice injected simultaneously regardless of

BMDM activation level, when injected at a delayed date mice from the medium treatment group

had a lower chance of survival overtime. These mice were the first to develop tumors that had

surpassed a volume of 1500 mm3, and by day 26 only 30% of these mice remained compared to

60% of mice from the high treatment group, 55% from the low treatment group, and 33% from

the control group (Fig. 7c).

When comparing the simultaneous tumor and BMDM injections with the delayed

BMDM injections, BMDM activated at a high or low level were generally able to best control

tumor growth when injected 7 days post-EMT6 injection, rather than with EMT6 (Fig. 8). The

simultaneously-injected medium group grew tumors smaller in size than those that were injected

at a delayed time, but these mice had a decreased probability of survival long-term, which

limited analysis of long-term behavior (Fig. 8). There was no significant difference in tumor

growth overtime between the delayed and simultaneous control groups (Fig. 8).
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In summary, agonist treatments appeared to have a significant effect on the efficacy of

BMDM in slowing tumor growth and limiting tumor severity. In both simultaneous and delayed

treatments, BMDM stimulated with high concentrations of LPS and FLA temporarily slowed

tumor growth, but had little effect on long-term tumor size or survival. BMDM treated with

medium concentrations of LPS and FLA led mice to develop tumors that were more aggressive

than those developed by mice treated with control BMDM. And lastly, BMDM that were treated

with low concentrations of LPS and FLA were effective in slowing tumor growth over an

extended period of time.
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Discussion

M1 macrophages have long been studied as a potential tumor therapy, but no previous

research has analyzed how the intensity of polarization toward the M1 phenotype may affect the

role of macrophages within the TME. Through this study, I attempted to adjust a pre-established

computational model of pro-inflammatory monocyte activation to be used for the prediction of

M1 polarization intensity following stimulation with varying concentrations of TLR4 and TLR5

agonists, and to further understand how this polarization intensity contributed to the therapeutic

efficacy of M1 macrophages.

RT-qPCR revealed notable differences in levels of expression of TLR-associated genes

when comparing BMDM to THP-1 monocytes. Accounting for the limitations of the model,

adjusting modeling input values to reflect differences in TLR gene expression produced a model

that was successful in producing an agonist-dose-dependent pattern of RNA output. This stability

provided evidence that the model had the potential to be adjusted for predicting the activation

intensity of M1 macrophages. Variations in RNA output following changes of LPS and FLA

levels indicated that the stimulation of the TLR5 pathway, with any amount of FLA, contributed

to an increase in cell activity beyond that of runs that only considered LPS. RNA output from

runs incorporating no, low or medium levels of FLA reflected consistent levels of or decreases in

output as LPS level increased, yet an opposite trend was observed when high FLA levels were

incorporated into the model, with RNA output increasing as LPS levels increased from low to

high. At lower FLA levels, the increases in LPS may have contributed to an overcrowding of the

few TLR5 receptors that were present, restricting the receptors from recognizing and binding to

FLA as efficiently to initiate signaling, contributing to the decreases in cell activity seen when

LPS was increased from low to high levels. These decreases could have also been a result of the
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decreased IRAK1 level, which was set to approximately ¼ of the value from the original THP-1

model. The stimulation of the cell with LPS would have triggered the initiation of the TLR4

signaling cascade, recruiting available MYD88. MYD88 would then recruit IRAK to the

complex, but the limited IRAK 1 amount would prohibit further pathway completion until the

IRAK 1 was available again. This may also have contributed to the slower, progressive build up

of RNA overtime, as opposed to the quicker peaks and stabilization observed with the monocyte

model. This gradual progression intensifies when FLA is added into the model, aligning with the

fact that TLR5 signaling is also IRAK 1 dependent (Seki et al., 2008), further reducing the

amount of IRAK 1 available at a given moment. The model appeared to still be actively

producing RNA beyond timestep 60,000 when LPS was high as well, indicating that the model

was still actively working through the available agonist molecules after this longer period of time

whereas runs incorporating lower agonist levels appeared to stabilize earlier, producing less

RNA overall and generally being able to work through available agonist at a faster rate.

Experimental results did not align with the predicted cell activation generated through

modeling. While the model had not shown any notable increase in cell activity with increases in

LPS alone, increasing the concentration of LPS utilized in experimental BMDM stimulation

from 0.05 µg/mL to 5.00 µg/mL significantly increased cellular IL-1β production. However, 0.05

and 0.50 µg/mL doses of LPS produced similar levels of IL-1β, which did align with model

predictions. Incorporating FLA into experimental testing revealed that, generally speaking, the

addition of FLA to cells stimulated with LPS did cause an increase in IL-1β production, as

predicted by the model. However, there were discrepancies that arose when 0.50 ​​µg/mL FLA

was used for stimulation in combination with 0.50 µg/mL and 5.00 µg/mL LPS, with decreases

in IL-1β production compared to samples stimulated with lower concentrations of FLA. This
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may tie back to the aforementioned low TLR5 receptor expression level, and to the

MYD88-independent pathway initiated by TLR4 that was not considered by the computational

model. Unlike most TLR cascades, TLR4 operates via both MYD88-dependent and

MYD88-independent mechanisms, with the independent pathway associated with IFN-I

production (Yamamoto et al., 2003) rather than pro-inflammatory cytokines like IL-1β (Gribar et

al., 2008). When this pathway is considered, it seems plausible that the middle concentration of

FLA may have pulled IRAK1 away from the TLR4 cascade for TLR5 signaling, leading the

TLR4 signaling pathway to operate primarily via MYD88-independent mechanisms. This would

then result in the production of more IFN-I over IL-1β, relative to cells stimulated with lower

levels of FLA that would not need to rely on this secondary cascade. Increasing FLA ten-fold

from this middle concentration to 5.00 µg/mL would lead the TLR5 pathway to be utilized more

frequently. As the TLR5 pathway only operates by MYD88-dependent mechanisms that produce

pro-inflammatory cytokines, the increased stimulation of this pathway would then increase the

IL-1β production from that seen in cells stimulated with 0.50 µg/mL FLA, which aligns with

experimental results. Though it was not tested, it would be reasonable to assume that this

increase in FLA from 0.50 µg/mL to 5.00 µg/mL further increases IFN-I production as well as

IL-1β production, as the TLR4 pathway will shift toward MYD88-independent mechanisms as

IRAK1 is used more frequently in TLR5 signaling. Further studies should consider quantifying

IFN-1 production via an ELISA, to test this hypothesis.

The model was unable to predict the trends observed with M1 polarization intensity, but

it still seems likely that further modifications could be made to improve its value. IRAK1, NFκB,

and TLR5 were unable to be adjusted directly to their RT-qPCR-indicated value, as this would

have reduced their respective inputs to a value ≤ 1. Dropping to such a low input would prevent
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the model from being able to complete both the TLR4 or TLR5 signaling cascades, as there

would have been too few IRAK1, NFκB, and TLR5 molecules present for output to have been

produced within the observed timeframe. These proteins serve as potential targets for future

changes that may affect modeling results while maintaining model stability. Other unchanged

values, such as those affecting component size and velocity, could be modified as well to better

reflect differences in movement within BMDM compared to monocytes. Additionally, the model

may benefit from the incorporation of the MYD88-independent TLR4 signaling pathway, as it is

currently not considered (Liew et al., 2018) but is suspected to play a role in how BMDM

respond to dual TLR4 and TLR5 stimulation. The decreased level of IRAK 1 in BMDM provides

evidence that these cells could rely on this IRAK-independent pathway more frequently than the

monocytes that provided the basis for the original model, and the inclusion of this secondary

pathway may better reflect how TLR pathways operate in BMDM, alone and when stimulated

simultaneously. There may also be value in the experimental testing of additional inflammatory

cytokines, such as IL-12. The original model had been tested against four proteins, aligning with

IL-1β and NFκB but not with TNF-ɑ or IL-6 (Liew et al., 2022). As only four factors were

tested, the study of others may reveal that the production of an alternative cytokine may better

reflect modeling results. IL-12 has long been considered a strong candidate for tumor treatments,

with debate on the best method of cytokine delivery (Nguyen et al., 2020). If the model-predicted

cell activation aligned with IL-12 expression in stimulated BMDM, this information may provide

further insight into the prediction of BMDM therapeutic efficacy and could promote the use of

BMDM as a delivery method.

While the model was unable to be directly adapted for BMDM based on RT-qPCR results

alone, I chose to continue with testing the therapeutic efficacy of stimulated BMDM to
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investigate if M1 polarization intensity had any effect on therapeutic efficacy. Evidence that

differences in TLR agonist concentration contribute to differences in the efficacy of BMDM as a

tumor therapy would provide grounds that the model could be used in predicting a therapeutic

response, once adjusted to better reflect TLR mechanisms in BMDM. For therapeutic testing,

“low”, “medium”, and “high” treatments were determined based on the distinct levels of IL-1β

produced by BMDM following dual TLR4 and TLR5 stimulation. Mice treated with BMDM

activated at a high level initially showed a significant slowing of tumor growth compared to mice

from the control group, but this difference appeared to wear off at approximately day 20, with

tumor size suddenly spiking, leaving the growth rate and severity to match that of the control

group for the remainder of the testing period. BMDM activated at a medium level displayed an

initial benefit compared to the control when mice were injected with both BMDM and EMT6

simultaneously, but this effect wore off earlier than those at a high level. In both simultaneous

and delayed BMDM injections, over the course of the 28-day measurement period mice from the

medium treatment group displayed larger, more aggressive tumors, emphasizing that these

BMDM were displaying M2 effects. BMDM activated at a low level initially did not contribute

to any notable difference in tumor size compared to the control group, but over time their tumor

growth rate seemed to stabilize, leading mice treated with these cells to develop smaller tumors

and have an increased probability of survival compared to the control group.

As all treatments contributed to tumor sizes and survival probabilities that were different

from those of the control group, it is clear that the concentrations of agonists used for TLR

stimulation are critical in predicting the response of a tumor to BMDM-based therapeutic agents.

The initial difference in tumor size observed in cells treated with BMDM activated at a high and

low level may have been caused by IL-1β, which would have had a limited long-term effect due
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to the role that the acidic pH of the TME would play in the generation of bioreactive IL-1β (Edye

et al., 2015). TNF-ɑ, which was produced by all cells at a similar level regardless of agonist

concentration, is also rapidly degraded in acidic environments, and may not contribute to

long-term benefits if cells are unable to maintain the M1 phenotype for an extended period of

time following signaling from cytokines in the TME (Heming et al., 2001). Additionally, both

IL-1β and TNF-ɑ have been known to contribute to tumor progression if present in excess (Gelfo

et al., 2020) (Wang et al., 2008), and this may have played a role in the sudden spikes in tumor

growth rates seen in the high and medium treatment groups. However, from this alone, it is

unclear why the BMDM activated at a medium level would have transitioned so quickly to serve

in the long-term promotion of tumor growth and severity. To better understand the differences

observed between these groups, and to provide insight into the mechanisms that contribute to the

sustained benefit provided by BMDM activated with low LPS and FLA levels, studying the

production of additional cytokines following TLR stimulation could be beneficial. If

pro-inflammatory cytokines that had not been previously studied were shown to have differences

in production rates with changes in concentrations of TLR agonists used for stimulation, some of

the inconsistencies that currently exist when comparing activation intensity and therapeutic

efficacy could be resolved. Again, IL-12 should be considered a cytokine of interest, as IL-12

has been known to persist even in acidic conditions (Chen et al., 2023).

Another plausible distinction between the treatment groups may relate to differences

between the standard MYD88-dependent TLR4 pathway and the aforementioned

MYD88-independent pathway. Some proteins involved with the independent pathway, such as

IFN-I, may affect tumor development. Weak, chronic IFN-I responses, for example, are known to

contribute to tumor cell survival through the development of resistance to DNA damage, while
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more intense responses are known to be cytotoxic (Cheon et al., 2023). The BMDM activated at

a medium level may have produced just enough IFN-I to produce a weak response, which could

have generated DNA damage relatively quickly to cause the sharp spike in tumor size and

severity seen around day 14. BMDM activated at a high level may have initially produced levels

of IFN-I that were cytotoxic, but as BMDM began to transition into an M2 phenotype in

response to TME signaling, the production of IFN-I may have dropped to a lower dose,

promoting the DNA damage seen earlier on with the medium treatment group and causing a

increase in tumor growth rate. This would provide an explanation for the similarities between the

final tumor sizes and probability of survival in mice treated with BMDM activated at high and

low levels. As BMDM stimulated with lower agonist concentrations may have been able to

operate without the use of the MYD88-independent pathway, they would lack the IFN-I response

that cells activated at medium and high levels would generate, which may explain why BMDM

activated at a low level were more likely to show a sustained anti-tumor effect than BMDM

activated at a medium level.

Adapting the computational model through RT-qPCR may have proved to be

unsuccessful, but the differences in tests of the therapeutic capabilities of cells stimulated with

varying TLR agonist concentrations highlight the potential use of an accurate model of the

BMDM response to TLR4 and TLR5 stimulation in the prediction of the therapeutic efficacy of

BMDM as a treatment for tumors. Through the consideration of alternative output variables over

IL-1β, the continued adjustment of parameters, and the inclusion of the MYD88-independent

pathway, one may be able to generate a model similar to the THP-1 model that could be used to

predict how TLR signaling in macrophages may be harnessed to slow or reduce tumor size and

severity. Further experimental testing of cytokines may reveal more information about how
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BMDM are responding to TLR stimulation, and how the MYD88-independent TLR4 pathway

may contribute to delayed pro-tumor effects in cells treated with LPS. Expanding upon

therapeutic testing, the further delay of the BMDM injection from day 7 to day 14 would provide

insight into the therapeutic efficacy of BMDM in treating more established, aggressive tumors,

as day 7 tumors are still relatively small and controlled. Additionally, repeated injections of

BMDM at days 7, 14, and 21, or at days 14 and 21, would better replicate the repeated treatments

that are common in cancer therapies, and would test whether the injection of fresh BMDM into

the tumor site allows cells to retain M1 characteristics for an extended period of time, allowing

highly-activated cells to better control tumor size without loss of efficacy.
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Figures

Figure 1. Differences in TLR-Associated Gene Expression. RT-qPCR results showing expression of all ten tested
TLR-related genes, set against the expression levels in THP-1 cells (a). IRAK2 excluded to allow visualization of
expression differences in the nine other TLR-related genes (b). Asterisks represent significance at a level of p < 0.05
(*). The data represent the average ∓ SE of three separate experiments.
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Figure 2. Prediction of RNA Output with TLR4 Stimulation From Models 1-3. Line charts displaying the
cumulative RNA output overtime for model 1 (a), model 2 (d) and model 3 (g), with runs grouped into high,
medium, and low doses of LPS. Clustered bar charts visualizing the RNA output with LPS variation overtime for
grouped data from model 1 (b), model 2 (e) and model 3 (h). Line charts representing the cumulative RNA output
overtime for individual LPS level data for model 1 (c), model 2 (f) and model 3 (i). Runs grouped as “low” are
shown as blue solid lines, those grouped as “medium” are shown as green dashed lines, and those grouped as “high”
are shown as orange dotted lines.
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Figure 3. Prediction of RNA Output with TLR4 and TLR5 Stimulation From Model 4. Line charts of RNA
output with changes in grouped LPS level, divided according to grouped FLA level (a). Line charts of RNA output
with changes in FLA level, divided according to LPS level (b). Bar plots depicting the intertwined relationship of
LPS and FLA adjustments over time, with timestep shown in bold above each set of three bars (c). Line charts of
RNA output with changes in individual LPS levels, divided by individual FLA levels (d).
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Figure 4. Inflammatory Cytokines Produced by TLR-stimulated BMDM Concentrations of IL-1β in
supernatants of BMDM 24, 48, and 72 hours post-stimulation with 1 of 3 LPS concentrations or HBSS as a control
(a). Concentrations of IL-1β in supernatants of BMDM 2, 6, 12, 24, 48, and 72 hours post-stimulation with 1 of 3
LPS concentrations (b). Concentrations of IL-1β in supernatants of BMDM 24 post-stimulation with 1 of 3 LPS
concentrations alone or in combination with 1 of 3 FLA concentrations (c). Concentrations of TNF-α in supernatants
of BMDM 24 post-stimulation with 1 of 3 LPS concentrations alone or in combination with 1 of 3 FLA
concentrations. Dashed line represents the average TNF-α concentration in the supernatants of BMDM treated with
HBSS alone(d). All data represent the average ∓ SE of three separate experiments. Asterisks represent significance
at levels of 95% confidence (*), 99% confidence (**), and 99.9% confidence (***).
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Figure 5. Inconsistencies between modeled and experimental results. Side-by-side comparisons of
model-generated RNA outputs, shown on the left, and experimentally calculated IL-1β production, shown on the
right, when cells are stimulated with LPS alone overtime (a) and when cells are stimulated with LPS and FLA
simultaneously and collected 24 hours-post stimulation, or at the estimated modeling equivalent of timestep 20,000
(b). All experimental data represent the average ∓ SE of three separate experiments. Asterisks represent significance
at levels of 95% confidence (*), 99% confidence (**), and 99.9% confidence (***).
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Figure 6. Simultaneous Injection of EMT6 and BMDM. Line chart showing the average size of EMT6-derived
tumors in mice that received a simultaneous injection of BMDM stimulated with 5.00 µg/mL LPS and 5.00 µg/mL
FLA (“High” treatment group), 0.50 µg/mL LPS and 0.50 µg/mL FLA (“Medium” treatment group), 0.05 µg/mL
LPS and 0.05 µg/mL FLA (“Low” treatment group), or HBSS (“Control” treatment group) (a). Dashed lines
indicate data generated by exponential regression rather than data collected experimentally. The data represent the
average ∓ SE of three separate experiments, each with a sample size of 4-6 mice per treatment. Kaplan meier curves
showing survival probability overtime (b). Asterisks represent significance at levels of 95% confidence (*) and
99.9% confidence (***).

Figure 7. Delayed injection of BMDM. Line chart of the average tumor volume of mice that received an injection
of BMDM stimulated with 5.00 µg/mL LPS and 5.00 µg/mL FLA (“High” treatment group), 0.50 µg/mL LPS and
0.50 µg/mL FLA (“Medium” treatment group), 0.05 µg/mL LPS and 0.05 µg/mL FLA (“Low” treatment group), or
HBSS (“Control” treatment group) one week following EMT6 injection (a). Line chart displaying the change in
tumor volume from a given treatment’s average tumor volume at day 7 (b). Dashed lines indicate data generated by
exponential regression rather than data collected experimentally. The data represent the average ∓ SE of two separate
experiments, each with a sample size of 4-6 mice per treatment group. Kaplan meier curves showing survival
probability overtime (c). Asterisks represent significance at levels of 95% confidence (*) and 99% confidence (**).
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Figure 8. Comparison of Simultaneous and Delayed BMDM Injection. Line charts of the average tumor volume
of mice that received an injection of BMDM stimulated with 5.00 µg/mL LPS and 5.00 µg/mL FLA (“High”
treatment group), 0.50 µg/mL LPS and 0.50 µg/mL FLA (“Medium” treatment group), 0.05 µg/mL LPS and 0.05
µg/mL FLA (“Low” treatment group), or HBSS (“Control” treatment group), either one week following EMT6
injection or simultaneously with the EMT6 injection. The data represent the average of three separate simultaneous
experiments and two separate delayed experiments, each with a sample size of 4-6 mice per treatment group.
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Figure 9. TLR4 Signaling Pathways. LPS recognition by the TLR4 receptor initiates MYD88-independent (red) or
MYD88-dependent (blue) signaling through TRAM or TIRAP, which go on to produce inflammatory cytokines
and/or type 1 interferons.
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Tables

Table 1. Model Parameter Adjustments

Table 2. Mathematical Modeling of Tumor Sizes

Newman 46



Table 3. Assumptions of Computational Model Construction & Adaptation

Table 4. Assumptions of Modeling Analysis
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